
Towards Distributed Computation of Answer
Sets?

Marco De Bortoli, Federico Igne, Fabio Tardivo, Pietro Totis,
Agostino Dovier, and Enrico Pontelli

Dept DMIF, University of Udine, Udine, Italy
Dept CS, New Mexico State University, Las Cruces, NM

Abstract. Answer Set Programming (ASP) is a logic programming lan-
guage widely used in non monotonic automated reasoning. Thanks to its
popularity, in the last years there has been a great interest towards the
developing of efficient solvers, required to deal with complex problems,
like planning and NP problem solving. These solvers can be unable to
deal with programs that are “grounded” on huge amount of data, pos-
sibly resident in different sites. To address this problem, in this paper
we present a distributed approach to ASP problems, which involves all
the phases of the overall solving process: from a distributed grounder
(which can also be used as a solver for stratified programs) to two dif-
ferent techniques to deal with the pure solving phase (for non-stratified
program too), both of them using the non-standard graph coloring algo-
rithm to characterize answer sets. We show three proposals for solving
the issue, two of them developed with the high-level framework Apache
Spark, while the the third one is a C++ direct implementation of the
first one.

Keywords: Logic programming. ASP solving. Distributed computa-
tion.

1 Introduction

The Answer Set Programming (ASP) language has become very popular in the
last years thanks to the availability of more and more efficient solvers (e.g.,
Clingo [10] and DLV [1]). It is based on the stable model semantics from Gel-
fond and Lifschitz [11], introduced to resemble the human reasoning process;
together with its simple syntax, this make ASP a very intuitive language to be
used. Like most logic languages, ASP solving process is split into two phases:
the grounding, namely the transformation of the normal program in a so-called
ground program, which is the equivalent propositional logic program where each
rule is instantiated over the domain of its variables. The second phase con-
sists in the real solving process, which alternates non deterministic guesses and

? The work is partially supported by the Uniud PRID ENCASE, by GNCS-INdAM,
by two grants from University of Udine for “Tesi all’estero” and by Graz University
of Technology.

deterministic propagation to find the solutions, starting from the ground pro-
gram. As described, e.g., in [5], ASP has some important weakness when dealing
with real world complex problems, like planning [8, 16], which generates huge
ground programs. The grounding phase is in fact a strong limitation when deal-
ing with problems which generates a great amount of rules, especially if it is a
in-memory computation. This kind of programs leads to two issues, one regard-
ing the grounding itself and one regarding the computation of its stable models,
both limited by the amount of resource of the machine. Even if in literature
there is a fair interest towards the parallelization of stable models computation,
the single-machine multithreading applied to this field still has the memory lim-
itation issue.

To address this problem, we present in this paper our working project in this
direction, namely three distributed tools that exploit the shared resources of a
distributed system to deal with such programs, thus overcoming the limitation
of a single machine.

In chronological order, the first tool is a solver called mASPreduce [12] devel-
oped with the Apache distributed framework Spark, which uses the MapReduce
paradigm to distribute the computation. The second one is a solver for stratified
programs, still developed with Spark, which can be used also as a grounder,
called STRASP. Finally, the last solver we present, namely DASC (Distributed
Answer Set Coloring), makes use of the Coloring Algorithm on which mASPre-
duce is built. The Coloring Algorithm [13] is a non-standard technique for finding
stable models in terms of different colorings of a graph built over the ASP pro-
gram to solve. It was chosen because the graph is a data structure suitable to
distribution. The difference is that now it is implemented using the boost library
for C++ in order to lower the implementation level and to have more control on
the communication stage between the nodes of the cluster.

The paper is organized as follows. In Section 2 we explain the Graph Coloring
Algorithm for solving, implemented in different ways by both mASPreduce and
DASC. From Section 3 to 5 we present the three tools. Some experimental results
and comparison between them are reported in Section 6. The reader can find
our conclusions in Section 7.

2 Graph Coloring

We briefly present the Coloring Algorithm for computation of answer sets [13],
used by both mASPreduce and DASC solvers. In order to understand the fol-
lowing, we expect from the reader a basic knowledge about ASP syntax.

A labeled graph is a pair (G, `) where G = (V,E) is a directed graph and
` : E → L is a map from edges to a set of labels L = {0, 1} (intuitively 0 will
represent a positive dependency and 1 a negative dependency). (G, `) can be
represented by the triple (V,E0, E1), where Ei = {e ∈ E | `(e) = i} for i = 0, 1.
Given a labeled graph G = (V,E0, E1), an i–subgraph of G for i = 0, 1 is a
subgraph of the graph Gi = (V,Ei)—i.e. a graph G′ = (W,F) s.t. W ⊆ V , and
F ⊆ Ei ∩ (W 2). If x, y ∈ V , an i–path is a path from x to y in the graph Gi.

Let Π be a ground logic program; its rule dependency graph (RDG) ΓΠ =
(Π,E0, E1) is the labeled graph where nodes are the (number of) program rules
and

E0 = {(r, r′) | r, r′ ∈ Π,head(r) ∈ body+(r′)}
E1 = {(r, r′) | r, r′ ∈ Π,head(r) ∈ body−(r′)}

A (partial/total) coloring of ΓΠ is a partial/total map C : Π → {⊕,	}, where
⊕ and 	 are two colors. We will denote C⊕ = {r | r ∈ Π,C(r) = ⊕} and
C	 = {r | r ∈ Π,C(r) = 	}, and a (partial) coloring as (C⊕, C). Let us define
with CΠ the set of all (partial) colorings, and define a partial order over CΠ as
follows: let C,C ′ be partial coloring of ΓΠ . We say that C v C ′ iff C⊕ ⊆ C ′⊕ and
C	 ⊆ C ′	. The empty coloring (∅, ∅) is the bottom of the partial order CΠ . Colors
represent enabling (⊕) and disabling () of rules. Intuitively, we are interested
in finding all possible subsets of generating rules, leading us to all the possible
answer sets of a logic program.

Definition 1 (Generating Rules of an answer set). Given a set of atoms
X from a program Π, the set RΠ(X) of generating rules is given by

RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅}.

Let Π be a logic program, and let ΓΠ be the corresponding RDG. We de-
fine the notion of admissible coloring as follows: if X ∈ AS(Π), then C =
(RΠ(X), Π \ RΠ(X)) is an admissible coloring of ΓΠ (i.e., all the rules sat-
isfied by X are colored positively, and the other rules negatively). Moreover,
head(C⊕) = X [13]. We denote by AC(Π) the set of all admissible colorings of
ΓΠ .

By definition, admissible colorings are total and one-to-one with answer sets.
As shown in [13], for computing them we have to visit the space of partial
colorings. Of course we are interested in partial colorings that will lead us to a
total admissible coloring.

Let Π be a program and C a coloring of ΓΠ = (Π,E0, E1). For r ∈ Π:

– r is supported in (ΓΠ , C), if body+(r) ⊆ {head(r′) | (r′, r) ∈ E0, r
′ ∈ C⊕};

– r is unsupported in (ΓΠ , C), if there is q ∈ body+(r) s.t. {r′ | (r′, r) ∈
E0, head(r′) = q} ⊆ C	;

– r is blocked in (ΓΠ , C), if there exists r′ ∈ C⊕ s.t. (r′, r) ∈ E1;
– r is unblocked in (ΓΠ , C), if r′ ∈ C	 for all (r′, r) ∈ E1.

We also define the sets of supported S(Γ,C), unsupported S̄(Γ,C), blocked
B(Γ,C), and unblocked B̄(Γ,C) rules. By definition, S(Γ,C)∩ S̄(Γ,C) = ∅ and
B(Γ,C)∩B̄(Γ,C) = ∅. With C total coloring, a rule is unsupported or unblocked
iff it is not supported or blocked, respectively. This is not true, in general, for
partial colorings.

The above defined notions can be used to define an operational semantics to
compute the stable models of a logic program. We will only give an overview of

the characterization implemented in our solver. For a deeper analysis of several
other operational characterizations, we refer the reader to [13].

Let Γ be the RDG of a logic program Π and C be a partial coloring of Γ .
The coloring operator D�Γ : C→ C, where � ∈ {⊕,	}, is defined as follows:

1. D⊕Γ = (C⊕ ∪ {r}, C) for some r ∈ S(Γ,C) \ (C⊕ ∪ C);
2. D	Γ = (C⊕, C	 ∪ {r}) for some r ∈ S(Γ,C) \ (C⊕ ∪ C).

Operator D�Γ will be used to encode a branching path in the visit of the
coloring tree, in fact, representing a non-deterministic choice (restricting our
choice to the supported rules). Since support is a local property of a node (it only
depends on information coming from the neighborhood), the coloring operator
can be efficiently applied.

Let Γ be the RDG of a logic program Π and C be a (partial) coloring of Γ .
Let us define the operators PΓ , TΓ ,VΓ : C→ C as follows

PΓ (C) = (C⊕ ∪ (S(Γ,C) ∩ B̄(Γ,C)), C	 ∪ (S̄(Γ,C) ∪B(Γ,C)))
TΓ (C) = (C⊕ ∪ (S(Γ,C) \ C), C)
VΓ (C) = (C⊕, Π \ V)

where V = T ∗Γ (C⊕) and T ∗Γ (C) is the v-smallest coloring containing C and
closed under TΓ . A coloring C is closed under the operator op if C = op(C).
Finally, let (PV)∗Γ (C) be the v-smallest coloring containing C and being closed
under PΓ and VΓ .

Theorem 21 (Operational Answer Set Characterization, III) Let Γ be
the RDG of a logic program Π and let C be a total coloring Γ . Then, C is an
admissible coloring of Γ iff there exists a coloring sequence C0, C1, . . . , Cn such
that: (1) C0 = (PV)∗Γ ((∅, ∅)), (2) Ci+1 = (PV)∗Γ (D�Γ (Ci)) for some � ∈ {⊕,	}
and 0 ≤ i < n, (3) Cn = C.

Given an admissible coloring C (point 3), head(C⊕) returns its corresponding
answer set. The proof of the above theorem can be found in [13] and a general
introduction of so-called ASP computation is given in [14].

3 The mASPreduce solver

The mASPreduce solver is based on the MapReduce distributed programming
paradigm first introduced in [6]. It is designed to analyze and process large data
sets, and recent implementations of the model [7] are usually executed on clusters
to take full advantage of the parallel nature of the architecture. A preliminary
version was presented in [12].

A bare-bones implementation of MapReduce works on a generic collection of
homogeneus data, and provides a basic interface consisting of two methods:

1. map(·) that maps a function over a collection of objects. It outputs a collec-
tion of “key-value” tuples;

2. reduce(·) that takes as input a collection of key-value pairs and merges the
values of all entries with the same key. The merging operation is user-defined.

The user defines a MapReduce program as a sequence of map/reduce calls; mod-
ern implementations provide additional operators usually built on top of the
primitives map/reduce (e.g., filters, fixpoints).

We used Apache Spark as a state-of-the-art in-memory MapReduce frame-
work to implement the solver [17]. The framework relies on the concept of Re-
silient Distributed Dataset : a RDD is an immutable, fault-tolerant distributed
collection of objects, a read-only, partitioned collection of records, organized into
logical partitions, that may be located and processed on different nodes of the
network. Spark abstracts from the underlying storage system, making it virtu-
ally compatible with any kind of filesystem. We built our system on top of the
Hadoop Distributed File System (HDFS), since it is natively compatible with
Spark.

As a further astraction over MapReduce, Spark offers two different families
of high-level operators:

1. transformations, which create a new dataset from an existing one;
2. actions, which aggregate elements of a RDD with a custom function and

return a single results to the caller.

In this case, map is a simple example of transformation because it executes a
user-defined function on each node and returns a new RDD; reduce is an ac-
tion that aggregates all the elements of the RDD using the provided function.
Transformations are lazily executed, in that they do not compute their results
until an action needs to be executed.

We implemented the rule dependency graph and the graph coloring algorithm
for the computation of answer sets using the GraphX module [18] of Spark.

Apart from giving access to a complete distributed graph implementation,
GraphX also provides a Pregel API [15]. Pregel is a programming model for
large-scale graph problems and for fix-point computations over graphs. A typical
Pregel computation consists of a sequence of supersteps. Within each superstep,
vertices in a graph may interact with their neighbours sending messages. Each
vertex analyzes the set of messages received in the previous superstep (if any)
and alter its property according to a user-defined function; then, it can send new
messages to the neighbourhood. A Pregel computation stops when a superstep
does not generate any new message (or when other meta-conditions, such as a
maximum number of iterations, are met).

The software is written in Scala and the RDG of a logic program is imple-
mented as a subclass of Graph[VD,ED], GraphX built-in class that gives access to
the property graph. The original Graph[VD,ED] class is parametrized over vertex
and edge property labels (VD and ED respectively). In the case of the RDG class,
nodes keep track of rules and edges keep track of support and blockage relations
between rules. RDG is in turn enclosed in a wrapper class which keeps track of
the atom table (provided by the grounder) and the answer sets computed so far.

As described before, theRDG coloring process alternates between two phases:

1. Non-deterministic coloring : it is basically encoded as a visit over the color-
ings tree. Different heuristics will change the way we visit the tree, achieving
better performances on different programs;

2. Deterministic coloring : deterministic propagation of the colors to avoid a
blind visit of the colorings tree.

The main recursive procedure encodes the non-deterministic search and the back-
propagation process to compute all possible answer sets. At any time, it goes
through the vertices and (randomly) choose an uncolored supported rule. If none
exists, we reached an admissible total coloring and we can build the correspond-
ing answer set. In case an uncolored supported rule r exists, the computation
branches. In the first case, r is colored with ⊕ and the color is deterministically
propagated; finally, the function calls itself on the new graph. The second case
is similar, but r is colored with 	.

Deterministic and non-deterministic operators are implemented as map/re-
duce routines, while fixpoint operators are implemented using Pregel.

4 Exploiting stratification

Stratified programs reflect the following intuition: at the point of the inference
process where a rule is used, each negative reference should regard only atoms
such that a complete information about their foundedness is available. This
entails that a program is stratified if and only if it is possible to define an
ordering on the evaluation of the rules such that whenever we encounter a naf
literal its membership to the answer set is already determined.

The stable model is unique and can be obtained by iterating minimum fix-
point procedures at each strata [2]. The experiments presented in this section
are aimed to test the effectiveness of the Apache Spark approach in absence of
non determinism (hence, handling of backtracking).

[9, 4, 3] offer an overview of the way the computation of an answer set can be
structured in order to exploit SMP (Symmetric Multi-Processing) architectures.
Three levels of parallelism can be distinguished on a program P, of which we
implemented the first two: Component level parallelism, Rules level parallelism
and Single Rule level parallelism. The reader can find more details in [4].

5 The DASC solver

The DASC solver has been developed with the purpose of improving the poor
performance and scaling of mASPreduce, caused by the limitation of the high-
level framework Spark (as witnessed by the results on stratified programs ex-
plained in the next section). To reach this goal, we opted for a C++ implemen-
tation, with the help of the Parallel Boost Graph Library (briefly, PBGL) for
the distributed graph data structure, and the boost MPI library for the commu-
nication stage. Thanks to the latter, we have complete control over the messages
sent on the network and the synchronization between the different computational

nodes. Since the bad scaling of mASPreduce resides on the communication stage,
our optimization starts from that.

The way PBGL distributes the graph is pretty straightforward: vertices are
divided between the computational nodes in Round Robin way, stored in a node
list, and each unit keeps track of the edges connected to its local vertices with
adjacency lists. Vertex properties are stored in a property map.

5.1 Design choices

The first and most visible change with respect to mASPreduce is a modifica-
tion of the RDG structure, which has two noticeable effects: it is more suitable
to address the notify change implementation of propagation, explained in the
next subsection, and it potentially reduces the number of edges of an unbound
number, at the cost of doubling up the nodes. From now on, we refer to such a
graph as RDG’.

Definition 2 (New Rule Dependency Graph: RDG’). Given a logic pro-
gram Π we define the RDG’ Γ as the graph (V,E0, E1, E2) where

– V = Π ∪ atoms(Π)
– E0 = {(a, r) | a ∈ atoms(Π) ∧ r ∈ Π, a ∈ body+(r)}
– E1 = {(a, r) | a ∈ atoms(Π) ∧ r ∈ Π, a ∈ body−(r)}
– E2 = {(r, a) | r ∈ Π ∧ a ∈ atoms(Π), head(r) = a}

The reason why this graph is more suitable to our algorithm is that we rely
only on information local to a node to decide whether the latter is supported or
blocked.
For instance, a rule r is blocked if we are sure that in the actual coloring an
atom a belonging to body−(r) does not belong to the answer set, i.e, for all rules
r′ such that a = head(r′), then r′ ∈ C	. To perform this check without forcing
r to query all its neighbors, we could use a counter for each atom in body−(r)
to keep count of how many r′ were disabled. Since it is not a good idea to keep
variable size data structures inside a node, we opted to use atom nodes, each
one with its own single counter.

The other reason to choose this RDG structure is that it can strongly decrease
the number of edges, which is a very good point in a distributed graph: fewer
edges between different computational nodes, less amount of communication.

To address performance and reduce communication, a completely different
strategy was developed in DASC to implement the propagation operators.

MapReduce paradigm has a big downside when dealing with a distributed
system. Querying a neighbor stored in another computational node is a very
expensive operation, and this situation always happens, even if the considered
vertex would never be touched by the actual propagation. We refer to nodes
connected to other computational units as border nodes; since MapReduce relies

on the fact that each node queries all of its neighbors, this implies that also in
the case of a local propagation, which theoretically does not need to send any
message on the network, edges connected to border nodes are crossed, causing
useless traffic inside the cluster.

To fix the problem, the idea is to develop an algorithm in which only the nodes
really affected by the actual propagation (plus their neighbors) are touched: we
will refer to this implementation as notify change algorithm, since it will be
duty of an affected node to notify its neighbors of an eventual change in its col-
oring state, and not the opposite. The reader can find the pseudocode in Figure 1.

void no t i f y change (node v) {
//v i s even tua l l y co l o r ed by propagat ion ope ra to r s
i f (v has j u s t been co l o r ed) then

not i f y change (u) f o r a l l u such that the re i s a edge (v , u) ;
e l s e

re turn ;
}

Fig. 1. notify change pseudocode

6 Testing

In Figure 2 the reader can find a quick comparison between DASC and mASPre-
duce. Each DASC test is executed with all possible combinations of distribution
options.

STRASP solver supports both the maximal stratified subprogram and the
fully stratified program resolution; moreover, we implemented a first naive form
of distributed grounding, by exploiting the component and rule level parallelism
in order to distribute among the available nodes the computation and resolution
of the ground predicates.

STRASP performance as solver for stratified programs can be seen in Figure
3. We tested it by using the same logic (stratified) program, where the base
stratum is composed of predicates such as a(1..20).. The upper strata define
predicates with rules referring to the lower strata with combinations leading to
an exponentially large grounding. Each test instance is obtained from the previ-
ous by increasing (+10%) the ranges of the base stratum. The comparison with
Clingo shows that the two time series have similar trends, diverging only by a
constant factor; unfortunately this constant is too large.

Although the shape of the graph of the running times with this approach is
the same w.r.t. Clingo on the same stratified programs, the difference in terms of

constants showed that the approach is still unfeasible. Efficiency is probably lost
in the various abstraction levels that separates Apache users from the machine.

Since stratified programs can be fully evaluated at grounding time, the com-
putation of the maximal stratified subprogram can be used as a starting point
for a more general distributed grounding, by first grounding and solving the
maximal stratified subprogram with the distributed procedure implemented in
STRASP, and then considering the non deterministic part of the program.

Inst Distr
1 cp unit 2 cp unit 3 cp unit 4 cp unit 5 cp unit

DASC MR DASC MR DASC MR DASC MR DASC MR

1
RR 0.003

56.330
0.013

42.190
0.015

40.160
0.015

41.177
0.017

35.405
RD NR 0.010 0.011 0.013 0.014

2
RR 0.048

95.697
0.14

64.315
0.19

61.767
0.16

62.845
0.19

54.144
RD NR 0.184 0.151 0.166 0.172

3
RR 0.36

150.82
1.11

88.043
1.42

89.145
1.36

89.695
1.33

78.178
RD NR 1.226 1.393 1.115 1.232

4
RR 1.83

SE
6.23

SE
6.18

SE
6.26

SE
5.98

SE
RD NR 6.118 6.401 6.226 5.256

5
RR 7.03

to
22.84

to
23.86

to
33.60

to
24.21

to
RD NR 22.513 20.765 20.881 18.511

6
RR 21.99

to
71.09

to
81.55

to
69.76

to
65.83

to
RD NR 71.07 83.60 66.43 68.20

7
RR 58.90

to
188.85

to
185.45

to
212.69

to
220.73

to
RD NR 185.46 195.41 182.33 191.27

Fig. 2. Comparison between DASC and mASPreduce (MR) on a set of benchmarks.
For DASC, two distribution options are tested: round robin (RR) and heuristics based
(RD). NR means “not relevant”, SE “Spark Error”, and “to” timeout. Tests from 1 to
5 computation units.

7 Conclusions and Future Work

Since this project started with mASPreduce, we made some steps forward in
building a tool capable of exploiting distributed systems resources in order to
manage huge size programs. Yet, we are still far from achieve the goal of large
problems handling, and a lot of work has to be done to make our tools com-
petitive with state-of-the-art solvers. Heuristics implementation and a variant
of clause learning would probably be the main task to perform in order to clos-
ing the gap with them. At that point, DASC could be used to handle ground
programs too big for single machine solvers.

In order to handle the overall solving process, STRASP is a good starting
point for the grounding phase, even if performance are averagely 1000 time slower
then Clingo in stratified programs. This gap is probably due to Spark inefficiency,

1 3 5 7 9
0

1

2

Test

T
im

e
(s

ec
o
n
d
s)

1 3 5 7 9

0

1,000

2,000

Test

Fig. 3. Comparison between Clingo (left) and our Spark approach to stratified pro-
grams (right)

so we expect much better results with a direct implementation, how it happened
between mASPreduce and DASC. However, STRASP performance can still be
improved by implementing the last level (Single rule level) of parallelism, in
order to handle huge programs.

References

1. W. T. Adrian, M. Alviano, F. Calimeri, B. Cuteri, C. Dodaro, W. Faber, D. Fuscà,
N. Leone, M. Manna, S. Perri, F. Ricca, P. Veltri, and J. Zangari. The ASP system
DLV: advancements and applications. KI, 32(2-3):177–179, 2018.

2. K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89–148. Morgan Kaufmann, 1988.

3. M. Balduccini, E. Pontelli, O. El-Khatib, and H. Le. Issues in parallel execution
of non-monotonic reasoning systems. Parallel Computing, 31(6):608–647, 2005.

4. F. Calimeri, S. Perri, and F. Ricca. Experimenting with parallelism for the instan-
tiation of ASP programs. J. Algorithms, 63(1-3):34–54, 2008.

5. A. Dal Palù , A. Dovier, E. Pontelli, and G. Rossi. GASP: answer set programming
with lazy grounding. Fundam. Inform., 96(3):297–322, 2009.

6. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In E. A. Brewer and P. Chen, editors, 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, December 6-8,
2004, pages 137–150. USENIX Association, 2004.

7. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clus-
ters, volume 51, pages 107–113. ACM, Jan. 2008.

8. A. Dovier, A. Formisano, and E. Pontelli. An empirical study of constraint logic
programming and answer set programming solutions of combinatorial problems.
J. Exp. Theor. Artif. Intell., 21(2):79–121, 2009.

9. A. Dovier, A. Formisano, and E. Pontelli. Parallel answer set programming. In
Y. Hamadi and L. Sais, editors, Handbook of Parallel Constraint Reasoning., pages
237–282. Springer, 2018.

10. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control:
Preliminary report. CoRR, abs/1405.3694, 2014.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Logic Pro-
gramming, Proceedings of the Seventh International Conference, Jerusalem, Israel,
June 18-20, 1990, pages 579–597, 1990.

12. F. Igne, A. Dovier, and E. Pontelli. Masp-reduce: A proposal for distributed com-
putation of stable models. In Technical Communications of the 34th International
Conference on Logic Programming, ICLP 2018, July 14-17, 2018, Oxford, United
Kingdom, volume 64 of OASICS, pages 8:1–8:4, 2018.

13. K. Konczak, T. Linke, and T. Schaub. Graphs and colorings for answer set pro-
gramming. TPLP, 6(1-2):61–106, 2006.

14. L. Liu, E. Pontelli, T. C. Son, and M. Truszczynski. Logic programs with abstract
constraint atoms: The role of computations. In V. Dahl and I. Niemelä, editors,
Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal,
September 8-13, 2007, Proceedings, volume 4670 of LNCS, pages 286–301. Springer,
2007.

15. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In S. Tirthapura
and L. Alvisi, editors, Proceedings of the 28th Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2009, Calgary, Alberta, Canada, August
10-12, 2009, page 6. ACM, 2009.

16. T. Son and E. Pontelli. Planning for biochemical pathways: A case study of answer
set planning in large planning problem instances. In M. De Vos and T. Schaub,
editors, Proceedings of the First International SEA’07 Workshop, Tempe, Arizona,
USA, volume 281 of CEUR Workshop Proceedings, pages 116–130, 01 2007.

17. The Apache Software Foundation. Apache Spark (website), 2018. [last accessed
Feb. 2018] https://spark.apache.org/.

18. The Apache Software Foundation. GraphX (website), 2018. [last accessed Feb.
2018] https://spark.apache.org/docs/latest/graphx-programming-guide.html.

